Interactions of Andronov-Hopf and Bogdanov-Takens Bifurcations

نویسنده

  • W. F. Langford
چکیده

A codimension-three bifurcation, characterized by a pair of purely imaginary eigenvalues and a nonsemisimple double zero eigenvalue, arises in the study of a pair of weakly coupled nonlinear oscillators with Z2 Z2 symmetry. The methodology is based on Arnold's ideas of versal deformations of matrices for the linear analysis, and Poincar e normal forms for the nonlinear analysis of the system. Bifurcation submanifolds of codimension one and two are identi ed in the parameter space. Many di erent classes of solutions are determined in the state space, including equilibria, limit cycles, invariant tori and the possibility of homoclinic chaos. As an application, a mechanism for energy transfer between two widely-spaced oscillation modes without strong resonance is identi ed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a simple circuit model showing feature-rich Bogdanov-Takens bifurcation

A circuit model is proposed for studying the global behavior of the normal form describing the Bogdanov-Takens bifurcation, which is encountered in the study of autonomous dynamical systems arising in different branches of science and engineering. The circuit is easy-to-implement and one can experimentally study the rich dynamics and bifurcations simply by altering the values of some linear cir...

متن کامل

Takens-Bogdanov bifurcations of periodic orbits and Arnold's Tongues in a Three-Dimensional Electronic Model

In this paper we study Arnold’s tongues in a Z2-symmetric electronic circuit. They appear in a rich bifurcation scenario organized by a degenerate codimension-three Hopf–pitchfork bifurcation. On the one hand, we describe the transition open-to-closed of the resonance zones, finding two different types of Takens–Bogdanov bifurcations (quadratic and cubic homoclinic-type) of periodic orbits. The...

متن کامل

Bifurcations of an Sirs Epidemic Model with Nonlinear Incidence Rate

The main purpose of this paper is to explore the dynamics of an epidemic model with a general nonlinear incidence βSI/(1 + αI). The existence and stability of multiple endemic equilibria of the epidemic model are analyzed. Local bifurcation theory is applied to explore the rich dynamical behavior of the model. Normal forms of the model are derived for different types of bifurcations, including ...

متن کامل

Bifurcation Analysis in a Predator-prey Model with Constant-yield Predator Harvesting

In this paper we study the effect of constant-yield predator harvesting on the dynamics of a Leslie-Gower type predator-prey model. It is shown that the model has a Bogdanov-Takens singularity (cusp case) of codimension 3 or a weak focus of multiplicity two for some parameter values, respectively. Saddle-node bifurcation, repelling and attracting Bogdanov-Takens bifurcations, supercritical and ...

متن کامل

Bogdanov-takens Singularity of a Neural Network Model with Delay

In this article, we study Bogdanov-Takens (BT) singularity of a tree-neuron model with time delay. By using the frameworks of CampbellYuan [2] and Faria-Magalhães [4, 5], the normal form on the center manifold is derived for this singularity and hence the corresponding bifurcation diagrams such as Hopf, double limit cycle, and triple limit cycle bifurcations are obtained. Examples are given to ...

متن کامل

On the Takens-Bogdanov Bifurcation in the Chua’s Equation

The analysis of the Takens-Bogdanov bifurcation of the equilibrium at the origin in the Chua’s equation with a cubic nonlinearity is carried out. The local analysis provides, in first approximation, different bifurcation sets, where the presence of several dynamical behaviours (including periodic, homoclinic and heteroclinic orbits) is predicted. The local results are used as a guide to apply t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998